Skip to contents

Weighted Production

For most intents and purposes, we recommend calculating all targets using the loan weighted production as an indicator. In particular, we define the loan weighted production of a given company, jj as: p¯i,j(t)=pi,j(t)*ljjlj \overline{p}_{i,j}(t) = p_{i,j}(t) * \dfrac{l_j}{\sum_j l_j} where pi,jp_{i,j} is the production of company ii in technology jj and ljl_j is the loan given to company jj.

To calculate portfolio targets, we aggregate this value by summing over every company in the portfolio: p¯i(t)=j[pi,j(t)*ljjlj] \overline{p}_i (t) = \sum_j \left[ p_{i,j}(t) * \dfrac{l_j}{\sum_j l_j} \right]

Effectively, this is a loan-weighted average of the production attributed to each company in your portfolio. A significant result of this indicator choice is that small companies (with little production) will be favorably weighted, given that the loan to that company is sufficiently large. This can be useful to reflect large investments into green start-ups.

To calculate the weighted production:

library(r2dii.data)
library(r2dii.match)
library(r2dii.analysis)

master <- loanbook_demo %>%
  match_name(abcd_demo) %>%
  prioritize() %>%
  join_abcd_scenario(
    abcd = abcd_demo,
    scenario = scenario_demo_2020,
    region_isos = region_isos_demo,
    add_green_technologies = FALSE
  )

summarize_weighted_production(master)
#> # A tibble: 168 × 5
#>    sector_abcd technology  year weighted_production weighted_technology_share
#>    <chr>       <chr>      <int>               <dbl>                     <dbl>
#>  1 automotive  electric    2020             436948.                     0.481
#>  2 automotive  electric    2021             442439.                     0.480
#>  3 automotive  electric    2022             447929.                     0.480
#>  4 automotive  electric    2023             453420.                     0.479
#>  5 automotive  electric    2024             458910.                     0.479
#>  6 automotive  electric    2025             464401.                     0.479
#>  7 automotive  electric    2026                 NA                     NA    
#>  8 automotive  electric    2027                 NA                     NA    
#>  9 automotive  electric    2028                 NA                     NA    
#> 10 automotive  electric    2029                 NA                     NA    
#> # ℹ 158 more rows

Weighted Percent Change in Production

On the other-hand, if you’re more keen to understand if the large corporations in your portfolio are planning to make any significant changes, the percent change in production may be a more useful indicator.

For each company, we define the percent change, χi(t)\chi_i(t), as compared to the start year, t0t_0:

χi(t)=pi(t)pi(t0)pi(t0)*100 \chi_i(t) = \dfrac{p_{i}(t)-p_{i}(t_0)}{p_i(t_0)} * 100 where pi(t)p_i(t) is the indicator (production or capacity) of technology ii, and t0t0 is the start year of the analysis.

We aggregate the percent-change in production for each company to the portfolio-level, by using the same loan-weighted average as above. In particular, for each loan ljl_j to company jj, we have: χi¯=j[χi,j*ljjlj] \overline{\chi_i} = \sum_j \left[ \chi_{i,j} * \dfrac{l_j}{\sum_j l_j} \right]

It should be noted that the percent change, χ\chi, is undefined for 0 initial production. Intuitively, this makes sense, since you would require an “infinite percent” build-out to grow to anything from 0. For this reason, any company having 0 initial production is filtered out prior to calculating the percent change indicator.

To calculate the weighted percent change:

# using the master dataset defined in the previous chunk:
summarize_weighted_percent_change(master)
#> # A tibble: 168 × 4
#>    sector_abcd technology  year weighted_percent_change
#>    <chr>       <chr>      <int>                   <dbl>
#>  1 automotive  electric    2020               0        
#>  2 automotive  electric    2021               0.0000626
#>  3 automotive  electric    2022               0.000125 
#>  4 automotive  electric    2023               0.000188 
#>  5 automotive  electric    2024               0.000250 
#>  6 automotive  electric    2025               0.000313 
#>  7 automotive  electric    2026              NA        
#>  8 automotive  electric    2027              NA        
#>  9 automotive  electric    2028              NA        
#> 10 automotive  electric    2029              NA        
#> # ℹ 158 more rows