Summaries based on the weight of each loan per sector per year
Source:R/summarize_weighted_production.R
summarize_weighted_production.Rd
Based on on the weight of each loan per sector per year,
summarize_weighted_production()
and summarize_weighted_percent_change()
summarize the production and percent-change, respectively.
Usage
summarize_weighted_production(data, ..., use_credit_limit = FALSE)
summarize_weighted_percent_change(data, ..., use_credit_limit = FALSE)
Arguments
- data
A data frame like the output of
join_abcd_scenario()
.- ...
Variables to group by.
- use_credit_limit
Logical vector of length 1.
FALSE
defaults to using the columnloan_size_outstanding
. Set toTRUE
to instead use the columnloan_size_credit_limit
.
Value
A tibble with the same groups as the input (if any) and columns:
sector
, technology
, and year
; and weighted_production
or
weighted_production
for summarize_weighted_production()
and
summarize_weighted_percent_change()
, respectively.
Warning
The percent-change analysis excludes companies with 0 production. percent-change is undefined for companies that have no initial production; including such companies would cause percent-change percentage to be infinite, which is wrong.
See also
Other utility functions:
join_abcd_scenario()
Examples
library(r2dii.data)
library(r2dii.match)
loanbook <- head(loanbook_demo, 150)
abcd <- head(abcd_demo, 100)
master <- loanbook %>%
match_name(abcd) %>%
prioritize() %>%
join_abcd_scenario(
abcd = abcd,
scenario = scenario_demo_2020,
region_isos = region_isos_demo
) %>%
dplyr::filter(production != 0)
summarize_weighted_production(master)
#> # A tibble: 12 × 5
#> sector_abcd technology year weighted_production weighted_technology_share
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 power hydrocap 2020 50971. 0.421
#> 2 power hydrocap 2021 50230. 0.421
#> 3 power hydrocap 2022 49490. 0.421
#> 4 power hydrocap 2023 48749. 0.421
#> 5 power hydrocap 2024 48009. 0.421
#> 6 power hydrocap 2025 47268. 0.421
#> 7 power renewablescap 2020 61070. 3.35
#> 8 power renewablescap 2021 61103. 3.35
#> 9 power renewablescap 2022 61137. 3.35
#> 10 power renewablescap 2023 61170. 3.35
#> 11 power renewablescap 2024 61204. 3.35
#> 12 power renewablescap 2025 42533. 2.85
summarize_weighted_production(master, use_credit_limit = TRUE)
#> # A tibble: 12 × 5
#> sector_abcd technology year weighted_production weighted_technology_share
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 power hydrocap 2020 46073. 0.381
#> 2 power hydrocap 2021 45404. 0.381
#> 3 power hydrocap 2022 44734. 0.381
#> 4 power hydrocap 2023 44065. 0.381
#> 5 power hydrocap 2024 43396. 0.381
#> 6 power hydrocap 2025 42726. 0.381
#> 7 power renewablescap 2020 60695. 3.37
#> 8 power renewablescap 2021 60416. 3.37
#> 9 power renewablescap 2022 60138. 3.37
#> 10 power renewablescap 2023 59860. 3.37
#> 11 power renewablescap 2024 59582. 3.37
#> 12 power renewablescap 2025 44619. 2.98
summarize_weighted_percent_change(master)
#> # A tibble: 12 × 4
#> sector_abcd technology year weighted_percent_change
#> <chr> <chr> <int> <dbl>
#> 1 power hydrocap 2020 0
#> 2 power hydrocap 2021 -0.0873
#> 3 power hydrocap 2022 -0.175
#> 4 power hydrocap 2023 -0.262
#> 5 power hydrocap 2024 -0.349
#> 6 power hydrocap 2025 -0.436
#> 7 power renewablescap 2020 0
#> 8 power renewablescap 2021 0.000439
#> 9 power renewablescap 2022 0.000877
#> 10 power renewablescap 2023 0.00132
#> 11 power renewablescap 2024 0.00175
#> 12 power renewablescap 2025 -0.0858
summarize_weighted_percent_change(master, use_credit_limit = TRUE)
#> # A tibble: 12 × 4
#> sector_abcd technology year weighted_percent_change
#> <chr> <chr> <int> <dbl>
#> 1 power hydrocap 2020 0
#> 2 power hydrocap 2021 -0.0789
#> 3 power hydrocap 2022 -0.158
#> 4 power hydrocap 2023 -0.237
#> 5 power hydrocap 2024 -0.316
#> 6 power hydrocap 2025 -0.395
#> 7 power renewablescap 2020 0
#> 8 power renewablescap 2021 -0.00364
#> 9 power renewablescap 2022 -0.00729
#> 10 power renewablescap 2023 -0.0109
#> 11 power renewablescap 2024 -0.0146
#> 12 power renewablescap 2025 -0.0898