Prepare data for plotting technology mix
Usage
prep_techmix(
data,
convert_label = identity,
span_5yr = FALSE,
convert_tech_label = identity
)
Arguments
- data
A data frame. Requirements:
The structure must be like market_share.
The following columns must have a single value:
sector
,region
,scenario_source
.The column
metric
must have a portfolio (e.g. "projected"), a benchmark (e.g. "corporate_economy"), and a singlescenario
(e.g. "target_sds").(Optional) If present, the column
label
is used for data labels.(Optional) If present, the column
label_tech
is used for technology labels.
- convert_label
A symbol. The unquoted name of a function to apply to y-axis labels. For example:
To convert labels to uppercase use
convert_label = toupper
.To get the default behavior of
qplot_techmix()
useconvert_label = recode_metric_techmix
.
- span_5yr
Logical. Use
TRUE
to restrict the time span to 5 years from the start year (the default behavior ofqplot_techmix()
), or useFALSE
to impose no restriction.- convert_tech_label
A symbol. The unquoted name of a function to apply to technology legend labels. For example, to convert labels to uppercase use
convert_tech_label = toupper
. To get the default behavior ofqplot_techmix()
useconvert_tech_label = spell_out_technology
.
Value
A data-frame ready to be plotted using plot_techmix()
.
Examples
# `data` must meet documented "Requirements"
data <- subset(
market_share,
scenario_source == "demo_2020" &
sector == "power" &
region == "global" &
metric %in% c("projected", "corporate_economy", "target_sds")
)
prep_techmix(data)
#> The `technology_share` values are plotted for extreme years.
#> Do you want to plot different years? E.g. filter data with:`subset(data, year %in% c(2020, 2030))`.
#> # A tibble: 30 × 13
#> sector technology year region scenario_source metric production
#> <chr> <chr> <int> <chr> <chr> <chr> <dbl>
#> 1 power coalcap 2020 global demo_2020 projected 21766.
#> 2 power coalcap 2040 global demo_2020 projected 22531.
#> 3 power coalcap 2040 global demo_2020 target_sds 5027.
#> 4 power gascap 2020 global demo_2020 projected 4602.
#> 5 power gascap 2040 global demo_2020 projected 2808.
#> 6 power gascap 2040 global demo_2020 target_sds 3289.
#> 7 power hydrocap 2020 global demo_2020 projected 23261.
#> 8 power hydrocap 2040 global demo_2020 projected 24599.
#> 9 power hydrocap 2040 global demo_2020 target_sds 24920.
#> 10 power nuclearcap 2020 global demo_2020 projected 0
#> # ℹ 20 more rows
#> # ℹ 6 more variables: technology_share <dbl>, scope <chr>,
#> # percentage_of_initial_production_by_scope <dbl>, label <chr>,
#> # label_tech <chr>, value <dbl>